Insight on Color Vol. 8, No. 11 # CIE L*C*h Color Scale ### **Background** The CIE L*C*h or CIELCh color scale is an approximately uniform scale with a polar color space. The CIELCh scale values are calculated from the CIELAB scale values. They are described in Section 4.2 of CIE Publication 15.2 (1986). The L*, lightness, value is the same in each scale. The C* value, chroma, and the h value, hue angle, are calculated from the a* and b* of the CIELAB scale. The CIELCh color space is diagrammed below. The basic delta values for this scale are ΔL^* , ΔC^* , and ΔH^* . They are the differences between the sample and standard in L^* , C^* , and h^* . The total color difference, ΔE^* is the same as the ΔE^* in the CIELAB scale. Another total color difference value often used with this color scale is ΔE_{cmc} . ΔE_{cmc} and associated values will be discussed in a separate Applications Note. Please refer to it for further information. #### **Conditions for Measurement** **Instrumental:** Any HunterLab color measurement instrument Page 1 ©Copyright 2008 Applications Note Vol. 8, No. 11 Illuminant: Any Standard Observer Function: 2 or 10 degree Transmission and/or Reflectance: Either. ### **Formulas** If X/X_n , Y/Y_n , and Z/Z_n are all greater than 0.008856, then use the following equation for L*: $$L^* = 116 \sqrt[3]{\frac{Y}{Y_n}} - 16$$ If any of X/X_n , Y/Y_n , or Z/Z_n is equal to or less than 0.008856, then use this equation for L*: $$L^* = 903.3 \left(\frac{Y}{Y_n} \right)$$ where X, Y, and Z are the CIE Tristimulus Values. X_n , Y_n , and Z_n are the tristimulus values for the illuminant. Y_n is 100.00. X_n and Z_n are listed in the tables below. CIE 2 Degree Standard Observer | Illuminant | $\mathbf{X}_{\mathbf{n}}$ | $\mathbf{Z}_{\mathbf{n}}$ | |------------|---------------------------|---------------------------| | A | 109.83 | 35.55 | | C | 98.04 | 118.11 | | D_{65} | 95.02 | 108.82 | | F2 | 98.09 | 67.53 | | TL 4 | 101.40 | 65.90 | | UL 3000 | 107.99 | 33.91 | | D_{50} | 96.38 | 82.45 | | D_{60} | 95.23 | 100.86 | | D_{75} | 94.96 | 122.53 | **CIE 10 Degree Standard Observer** | Illuminant | $\mathbf{X}_{\mathbf{n}}$ | $\mathbf{Z}_{\mathbf{n}}$ | |------------|---------------------------|---------------------------| | A | 111.16 | 35.19 | | C | 97.30 | 116.14 | | D_{65} | 94.83 | 107.38 | | F2 | 102.13 | 69.37 | | TL 4 | 103.82 | 66.90 | | UL 3000 | 111.12 | 35.21 | | D_{50} | 96.72 | 81.45 | | D_{60} | 95.21 | 99.60 | | D_{75} | 94.45 | 120.70 | $$C^* = \sqrt{a^{*2} + b^{*2}}$$ Applications Note Vol. 8, No. 11 $$h = \arctan \frac{b^*}{a^*}$$ where If X/X_n , Y/Y_n , and Z/Z_n are all greater than 0.008856, then use: $$a^* = 500 \left(\sqrt[3]{\frac{X}{X_n}} - \sqrt[3]{\frac{Y}{Y_n}} \right)$$ $$b^* = 200 \left(\sqrt[3]{\frac{Y}{Y_n}} - \sqrt[3]{\frac{Z}{Z_n}} \right)$$ If any of X/X_n , Y/Y_n , or Z/Z_n is equal to or less than 0.008856, then use: $$a * = 500 \left[f\left(\frac{X}{X_n}\right) - f\left(\frac{Y}{Y_n}\right) \right]$$ $$b^* = 200 \left[f\left(\frac{Y}{Y_n}\right) - f\left(\frac{Z}{Z_n}\right) \right]$$ where $$f\left(\frac{X}{X_n}\right) = \sqrt[3]{\frac{X}{X_n}} \qquad \text{when } X/X_n > 0.008856$$ $$f\left(\frac{X}{X_n}\right) = 7.87 \left(\frac{X}{X_n}\right) + \frac{16}{116}$$ when $X/X_n < 0.008856$ $$f\left(\frac{Y}{Y_n}\right) = \sqrt[3]{\frac{Y}{Y_n}}$$ when $Y/Y_n > 0.008856$ $$f\left(\frac{Y}{Y_n}\right) = 7.87 \left(\frac{Y}{Y_n}\right) + \frac{16}{116}$$ when $Y/Y_n < 0.008856$ $$f\left(\frac{Z}{Z_n}\right) = \sqrt[3]{\frac{Z}{Z_n}} \qquad \text{when } Z/Z_n > 0.008856$$ $$f\left(\frac{Z}{Z}\right) = 7.87 \left(\frac{Z}{Z}\right) + \frac{16}{116}$$ when $Z/Z_n < 0.008856$ $$\Delta L^* = L^*_{sample} - L^*_{standard}$$ $$\Delta C^* = C^*_{\text{sample}} - C^*_{\text{standard}}$$ $$\Delta H^* = \sqrt{\Delta E^{*2} - \Delta L^{*2} - \Delta C^{*2}}$$ if $h^{\circ}_{SMP} > h^{\circ}_{STD}$, then ΔH^* is regarded as positive. if $h^{\circ}_{SMP} < h^{\circ}_{STD}$, then ΔH^* is regarded as negative. Applications Note Vol. 8, No. 11 $$\Delta E^* = \sqrt{\Delta L^{*2} + \Delta a^{*2} + \Delta b^{*2}}$$ ## **Typical Applications** This color scale may be used for measurement of the color of any object whose color can be measured. For Additional Information Contact: Technical Services Department Hunter Associates Laboratory, Inc. 11491 Sunset Hills Road Reston, Virginia 20190 Telephone: 703-471-6870 FAX: 703-471-4237 www.hunterlab.com 06/08